
1612 

Total Synthesis of (±)-Vernolepin and (±)-Vernomenin 

Sir: 

Vernolepin (I) 1 and vernomenin (2),1 highly functional-
ized elemanolide dilactones, are the major constituents of 
Vernonia hymenolepis. Vernolepin, the major active princi­
ple, exhibits inhibitory activity against the Walker intra­
muscular carcinosarcoma 256 in rats at 12 mg/kg. We wish 
to record in this communication the total synthesis of (±) -
vernolepin (1) and (±)-vernomenin (2). 

Previous work2 in our laboratory, which established the 
feasibility of bis-a-methylenation of dilactone systems, sug­
gested the approach outlined in Scheme I which requires 
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construction of an AB-rra/u-decalin derivative with all five 
chiral centers intact, cleavage of ring A, and bislactoniza-
tion. In order to realize the synthetic scheme, we set out to 
prepare the key intermediate decalone, 9 (Chart I). Our ap­
proach called for the reduction (lithium-liquid ammonia) 
of an appropriately substituted epoxy ketone (eq 1) in the 
presence of a proton source (ammonium chloride).3 Of 
prime importance to the success of such a reaction is a-pro-
tonation of the regiospecifically generated enolate followed 
by reduction (lithium-ammonia) of the resultant keto func­
tion before elimination of the intermediate aldol. We now 
detail the synthesis of vernolepin and vernomenin. 
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Kinetic enolate formation of the ?rans-decalone, 34 '5 (mp 
59°), followed by trapping with phenylselenenyl chloride6 

provided a keto selenide which was treated with base and 
alkylated with prenyl bromide, affording an 83% yield of 
crystalline selenide 4, mp 157-158°. Selenoxide formation 

Chart L The Synthesis of fra/js-Decalone 9 
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"LDA, THF (-78°); PhSeCl-THF (-78°)/l h. &LDA, THF-

HMPA (9:1), 0°; prenyl bromide, room temp, 20 h. c30% H2O2, 
THF, 0° (30 min) ->• room temp (1 h). ̂ f-BuOOH (10 equiv), triton 
B (2.4 equiv, 40% in MeOH), THF, room temp, 20 h. eU, NH4Cl, 
NH3-THF, -33°, 20 min./Ac2O, Py, room temp. .TO3, CH2Cl2 
(-78°). h Jones reagent. ''CH2N2, Et20./'5% HCl-THF (1:2), room 
temp, 24 h. 

accompanied by facile elimination of phenylselenenic acid 
gave a 65% isolated, chromatographically pure yield of en-
docyclic enone 5, mp 90.5-91.0°. It should be noted that 
<20% of the exocyclic dienone was produced. Epoxidation 
of enone 5 was smoothly carried out with re/7-butyl hydro­
peroxide in tetrahydrofuran containing triton B. None of 
the /3-epoxide could be detected. Attempts to prepare 6 by 
the more conventional method (basic hydrogen peroxide) 
led to none of the desired a-epoxide. Treatment of epoxy 
ketone 6 with a large excess of lithium-ammonium chloride 
(ca. 1:1) in liquid ammonia-tetrahydrofuran (ca. 1:1) at 
- 3 3 ° for 20 min7 afforded the dihydroxy decalin 7 (80%) 
which was directly converted to its diacetate. Straightfor­
ward cleavage of the prenyl double bond and hydrolysis of 
the ketal provided the key intermediate 9 (mp 127-128°) in 
91% overall yield from 7. 

Having assembled all the asymmetric carbon atoms, we 
focused our attention on. the next stage of the synthetic 
scheme which requires the selective cleavage of the C-2, 
C-3 bond of ring A with formation of the angular vinyl sub-
stituent and the carboxylic acid function at C-3. Enolacety-
lation of 9 afforded exclusively (78%) the crystalline A2-
enol acetate 10, mp 133-134°. Ozonolysis of compound 10 
followed by treatment with sodium borohydride and ethere­
al diazomethane provided the hydroxyethyl compound 11 
which was smoothly converted into the desired olefinic cy-
clohexane' derivative 13 via the alkyl o-nitrophenylselenide 
128 (Chart II). Cleavage of the methyl ether, accomplished 
with boron tribromide in methylene chloride at —12°, was 
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Chart II. Synthesis of Bisnorvernolepin and Bisnorvernomenin 
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a Isopropenyl acetate, TsOH, reflux, 9 h. b O3, CH2Cl2-MeOH 
(1:1),-78°. ^NaBH4,-78°. "CH2N2, Et2O. ̂ MsCl, Py, 5°, 15 h. 
Zo-O2NC6H4SeCN, BH4", DMF, room temp, 20 h.^50% H2O2, THF, 
24 h, room temp. "BBr3, CH2Cl2, -78° (30 min)^ -12° (4 h). 'K2-
CO3, MeOH, 3 h, room temp. /TsOH, C6H6, reflux, 2 h. 

accompanied by simultaneous lactonization to the bicyclic 
lactone 14, mp 127-128°. Examination of the 250-MHz 
N M R spectrum of lactone 14 in carbon tetrachloride easily 

,COOMe 

confirmed the assigned structure: <5 5.12 (triplet, 1 H, J^ = 
Jbc = 11 Hz) and 4.94 (triplet of doublets, 1 H, J c d = /de = 
11 Hz, /df = 4.5 Hz). Acetate hydrolysis (77%) followed by 
lactonization (83%) provided a 2.5:1 mixture of bisnorver­
nolepin (15) and bisnorvernomenin (16) which, without 
separation, were converted to their respective tetrahydropy-
ranyl ethers. 

Bis-a-hydroxymethylation of the tetrahydropyranyl 
ethers of 15 and 16 was performed by generation of their 
respective dilactone enolates with lithium diisopropylamide 
in tetrahydrofuran containing 10% hexamethylphosphora-
mide followed by addition of formaldehyde as described 
previously.9 Mesylation of the crude adducts 17 and 18 (R 
= H, CH 2OH) followed by /3-elimination employing 1,5-
diazabicyclo[5.4.0]undec-5-ene in benzene at room temper­
ature gave 17 and 18 (R = = C H 2 ) in 16% overall yield. 
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Hydrolysis (60% aqueous acetic acid, 3 h, 45°) of the te­
trahydropyranyl ethers afforded (71%) crude vernolepin (1) 
and vernomenin (2) as a mixture (ca. 3:1). Vernolepin and 
vernomenin were cleanly separated by preparative layer 
chromatography on 0.25-mm silica gel plates (one elution 
with chloroform-acetone (3:1)). (i)-Vernolepin, mp 210-
211°, was identical with a sample of natural vernolepin,10 

mp 181-182°, by thin layer chromatographic and spectral 
comparisons. (±)-Vernomenin, mp 186-188°, was identical 
according to spectral comparisons with spectra kindly pro­
vided by Professor S. M. Kupchan. 
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Reaction Rate Difference in the Laser Excitation 
of Different Vibrational Modes of CF2ClCF2Cl 

Sir: 

When a molecular vibrational mode of a gaseous system 
is excited by a laser tuned to the frequency of that mode, in-
termolecular collisions and intramolecular mode coupling 
act to transfer the excitation to other vibrational and trans-
lational modes. If the tranfer rates are sufficiently rapid, 
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